在故障容限并聯(lián)冗余系統(tǒng)中,每臺(tái)轉(zhuǎn)換器模塊的輸出端Vout到電源母線(在圖1左端扦件上)必須串入一只二極管。在輸出母線上二極管的共陰極,總輸出電流為各DC-DC轉(zhuǎn)換器之和。這樣任何模塊出現(xiàn)包括輸出短路的任何故障狀態(tài)時(shí),都可確保母線和電源系統(tǒng)可靠工作。
當(dāng)模塊的輸出電壓降低時(shí),串聯(lián)二極管承受反向電壓,因此,可簡(jiǎn)單地實(shí)現(xiàn)電源母線與轉(zhuǎn)換器隔離。每臺(tái)模塊的取樣線必須接在串聯(lián)二極管的前面,并且最好接在熱插拔插頭的前面。分,可以確保電源模塊插拔過程中,轉(zhuǎn)換器控制回路不會(huì)出現(xiàn)任何瞬間開路。該電阻的最佳阻值為24Ω/V,也就是說(shuō),該電阻的阻值決定于輸出電壓。例如,輸出電壓為5V時(shí),最好選用120Ω電阻。
總之,具有熱插拔功能的電源模塊應(yīng)具有以下特點(diǎn):拔出前電源模塊應(yīng)當(dāng)關(guān)斷;插入時(shí),電源模塊應(yīng)處于暫時(shí)關(guān)斷;電源模塊應(yīng)能限制浪涌電流。
2.IAM48模塊的應(yīng)用
IAM48輸入功率調(diào)整模塊Vin為36V-76V10A而Vout為+75Vto-75V其效率為97%。
IAM48模塊含有一只串聯(lián)FET開關(guān),可以實(shí)現(xiàn)48V母線到DC-DC轉(zhuǎn)換器輸入的通斷控制,通斷控制腳on/off(見圖1中IAM48模塊的引腳) 內(nèi)部有上拉電路,并且為了將48V母線與DC-DC轉(zhuǎn)換器模塊接通,通斷控制器必須拉到低電平。該模塊內(nèi)兩輸出端(+Vout與-Vout)之間還有一個(gè)并聯(lián)開關(guān)。當(dāng)通斷控制腳對(duì)48母線負(fù)極為高電平(斷開)時(shí),該并聯(lián)開關(guān)處于導(dǎo)適狀態(tài)。
當(dāng)48V母線關(guān)斷時(shí),母線上的保持電容可通過并聯(lián)開關(guān)迅速放電。除了通斷控制功能外,IAM48模塊還具有限制浪捅電流的功能,并且與FiltMod模塊或EMI濾波器模塊配合,還可完成瞬變過電壓保護(hù).通信設(shè)備中為了滿足EMC{電磁兼容)標(biāo)準(zhǔn),通常都采用IAM48和FitMod模塊(見圖1中FitMod模塊與IAM48模塊的連接)。在通信設(shè)備中,都要求電源模塊具有熱插拔功能,因此應(yīng)選用lAM48電源模塊或其他可限制浪涌電流的模塊。
3FiltMod模塊特征
VI-IAM(即FiltMod模塊)輸入衰減模塊是一只元件級(jí)的DC輸入前端濾波器,它的特點(diǎn)是占用很少的空間,同時(shí)提供最大的保護(hù)效能,適用于精密的電子系統(tǒng)。VI-IAM可與Vicor的24V、48V或300V輸入模塊配套使用,組成高效率,高功率密度的電源系統(tǒng)。系統(tǒng)的輸出電壓由1至95V,功率達(dá)400W(可擴(kuò)展至800W)。利用VI-IAM可組成體積少、高效及可靠的電源系統(tǒng),滿足電訊和工業(yè)應(yīng)用的最高要求。4電源模塊插入電源母線時(shí)的起動(dòng)順序如下
首先,除了短引腳外,接插件的所有引腳都按無(wú)規(guī)律的順序接通,此外,轉(zhuǎn)換器并不能起動(dòng)。因?yàn)橥〝嗫刂贫桃_并未接通,該腳通過晶體管Ql使IAM48模塊維持關(guān)斷狀態(tài)。同時(shí),晶體管Q3還把DC-DC轉(zhuǎn)換器模塊的PC腳拉到低電平,因此轉(zhuǎn)換器模塊處于關(guān)斷狀態(tài)。
當(dāng)所有其他引腳都接好以后,短引腳才接通。IAM48模塊的通斷腳被拉到低電平,因此IAM48模塊導(dǎo)通,48V電源母線上的電容器開始以可控的速率充電,母線電壓開始沿斜坡上升,這樣可把浪涌電流限制在安全值以內(nèi)。1AM48模塊導(dǎo)通后,DC-DC轉(zhuǎn)換器模塊得到使能信號(hào),但是當(dāng)母線電壓達(dá)到欠壓封鎖門限值(約34V)以前,DC-DC轉(zhuǎn)換器模塊不能起動(dòng)。
母線電壓達(dá)到欠壓封鎖值以后,由于DC-DC轉(zhuǎn)換器模塊具有軟起動(dòng)特性,所以至少還需經(jīng)過100ms后,轉(zhuǎn)換器模塊才開始吸入電流,并且輸出電壓開始逐漸上升。最后,當(dāng)轉(zhuǎn)換器模塊輸出電壓上升到使串聯(lián)在輸出端的二極管正向偏置時(shí),該轉(zhuǎn)換器模塊才輸出均衡的負(fù)載電流。
電源模塊IAM48母線上拔出時(shí)的工作順序與插入時(shí)的順序大致相反。短引腳在lAM48模塊關(guān)斷48V電源的其他引腳以前斷開,同時(shí),轉(zhuǎn)換器模塊關(guān)斷。母線電容通過IAM48模塊輸出端的并聯(lián)開關(guān)迅速放電,放電時(shí)間小于50ms。
此時(shí),電容C2繼續(xù)提供保持晶體管Q3導(dǎo)遁所需的電流。從而確保PC腳保持低電平,直到48V母線電壓下降到欠壓封鎮(zhèn)值。這樣,可以保證所有其他接點(diǎn)無(wú)規(guī)律斷開過程中,DC-DC轉(zhuǎn)換器模塊不產(chǎn)生功率變換脈沖。
上述熱扦拔技術(shù)已經(jīng)成功地應(yīng)用于許多產(chǎn)品中,并且在插拔過程中,輸入和輸出母線電壓波動(dòng)很小,在插拔過程中,應(yīng)當(dāng)保證所有模塊的引腳電壓不超過最高額定電壓。插入電源模塊IAM時(shí),必須在其他引腳必須完全斷開以后,短引腳才斷開。
用熱插拔控制器電路解決多個(gè)電路板或刀片熱插拔運(yùn)行中的安全問題
雖然用熱插拔功能的電源模塊(如IAM型)可組成48V分布式電源結(jié)構(gòu),但如何確保熱插拔運(yùn)行中的安全卻是很重要的控制技術(shù),于是適用于大功率刀片的-48V或+48V用熱插拔控制器電路技術(shù)被提到議事日程作研討。
1熱插拔控制器電路基本架構(gòu)
當(dāng)?shù)镀宓奖嘲迳蠒r(shí),刀片上所有連接到背板的電容開始充電,從背板吸取大量的電流。浪涌電流會(huì)導(dǎo)致背板電壓瞬間下降,并在連接器上產(chǎn)生電弧。過多的浪涌電流可使背板電源超載,從而完全關(guān)閉電源,并影響機(jī)架上其余刀片的工作。
為了盡可能地減小電路板熱拔插對(duì)機(jī)架上其余刀片的影響,熱插拔期間需要限制刀片的浪涌電流。限制浪涌電流的電路稱為“熱插拔控制器電路”。
圖2為在大功率刀片的-48V中實(shí)現(xiàn)的熱插拔控制器電路的主要基本架構(gòu)
從圖2的左上方開始,GND端通過肖特基二極管將電源送至DC/DC轉(zhuǎn)換器。DC/DC模塊是一個(gè)產(chǎn)生有效載荷電源電壓(12V、5.6V等)的獨(dú)立電源。DC-DC轉(zhuǎn)換器的負(fù)端通過MOSFET開關(guān)和電流感測(cè)電阻連接到-48V電源。DC/DC轉(zhuǎn)換器兩端的隔離(hold-off)電容保留了足夠的電荷以確保電路板在背板電壓降低期間保持運(yùn)作。
熱插拔控制器利用電流檢測(cè)電阻R檢測(cè)和VMOSFET信號(hào)來(lái)監(jiān)控MOSFET電流和電壓,以便控制在發(fā)生浪涌時(shí)MOSFET消耗的功率。
2熱插拔控制器電路的安全運(yùn)行
當(dāng)板卡被插入背板時(shí),可以看到由MOSFET寄生電容引起的短暫的浪涌電流脈沖(通常為幾毫秒)。此外,由于連接器的觸點(diǎn)顫動(dòng),電源以脈沖的方式加到刀片上。熱插拔控制器可使MOSFET和DC/DC轉(zhuǎn)換器在觸點(diǎn)顫動(dòng)停止前處于關(guān)閉狀態(tài)。然后利用R檢測(cè)上的電壓作為反饋電壓慢慢地打開MOSFET,這樣做是為了將浪涌電流值限制在刀片電源電流的最大給定值以下。該電流將對(duì)個(gè)隔離電容充電,直到VMOSFET引腳處的電壓接近-48V。此時(shí)DC/DC轉(zhuǎn)換器被打開,以便為刀片的有效載荷部分供電。
當(dāng)有另外的板卡插入而使背板電壓下降時(shí),隔離電容的作用是保證電路板處于工作狀態(tài)。隔離電容的大小與刀片消耗的總功率,以及防止出現(xiàn)欠壓的需求直接成正比。當(dāng)欠壓情況下的脈沖寬度超過預(yù)置的時(shí)間限制時(shí),將其歸為“電源欠壓”情況,此時(shí)欠壓鎖定過程開始。
欠壓鎖定過程關(guān)閉MOSFET,直到背板電壓恢復(fù)到正常值。在欠壓的情況下,與GND串聯(lián)的肖特基二極管可阻止來(lái)自隔離電容的反向電流流入背板。熱插拔控制器還能檢測(cè)到電源故障,如欠壓和過流。在這兩種情況下,熱插拔控制器將在故障排除后重新為刀片供電。
?